

Aims of ADAPTAWHEAT: achieving <u>adaptation</u> of reproductive growth across the wide range of latitudes in which wheat is grown as well as identifying developmental traits which may help increasing yield potential

Bottom – up approach

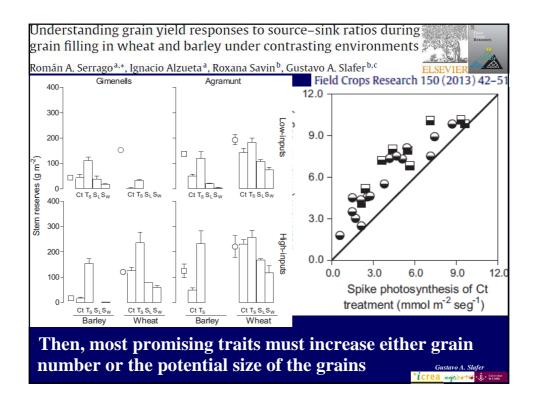
•NILs for Ppd, Eps alleles in different backgrounds

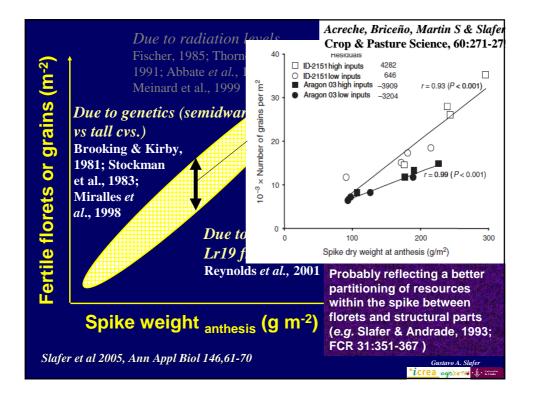
- Phenological characterization throughout consortium
- Phyllochron/Plastochron dynamics by selected partners
- Floret development on selected populations and partners

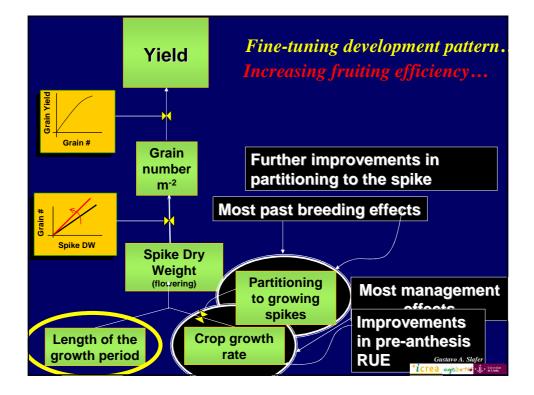
Quantifying "globally" the effects of particular alleles (x background) **on developmental attributes conferring adaptation and yield potential**

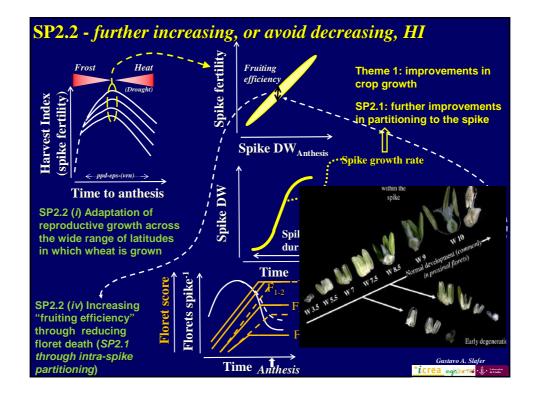
Top – down approach

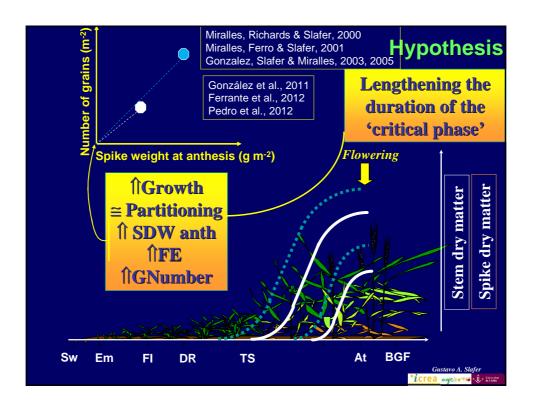
•Mapping populations derived from parents of different developmental characteristics // CIMCOG population

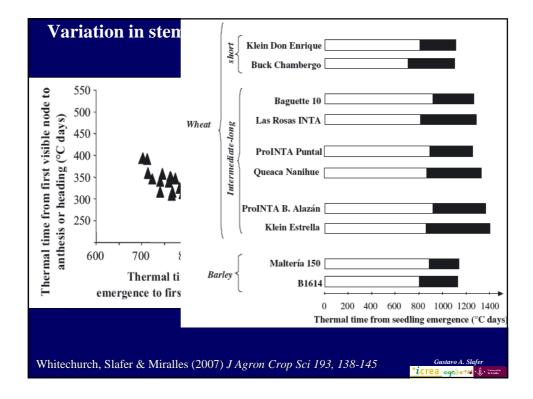

- Phenological characterization by several partners
- Phyllochron/Plastochron dynamics on selected partners
- Identifying genetic bases of particular developmental attributes conferring adaptation, beyond the effects of major genes, and yield potential through developmental attributes

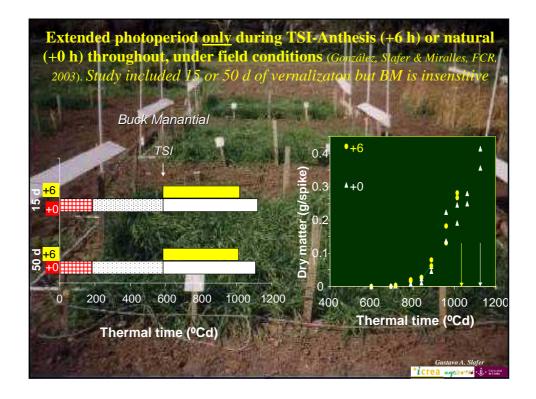

Many studies showed that yield in wheat and barley is mainly sink-limited during grain filling in a wide range of environmental conditions, including rain-fed crops in Mediterranean conditions

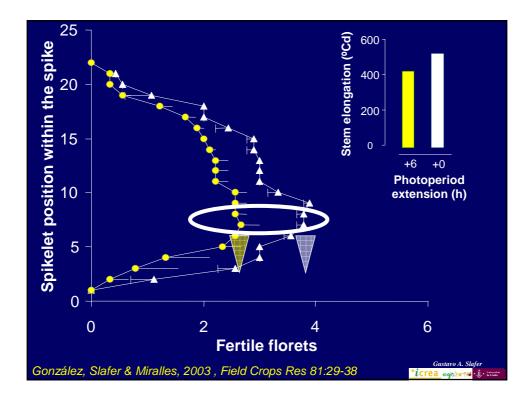

Evidences concurring to that conclusion include

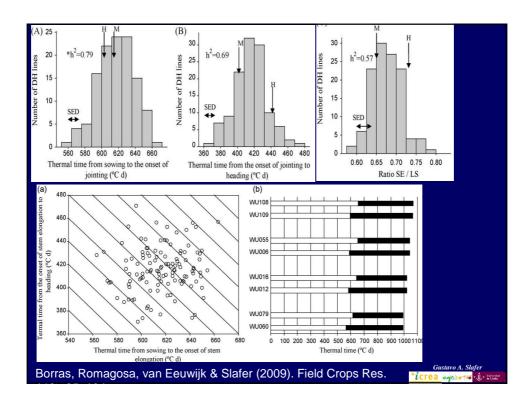

- Grain weight is mostly unresponsive to increases of sources during grain filling
- Photosynthesis seems to be down-regulated during grain filling, due to lack of enough sink-strength (if we remove grains, photosynthesis tends to be reduced, if we remove part of the photosynthetic capacity of some organs that of the other organs increase)
- Potential supply of CH₂O to growing grains does, in general, exceed yield actually achieved

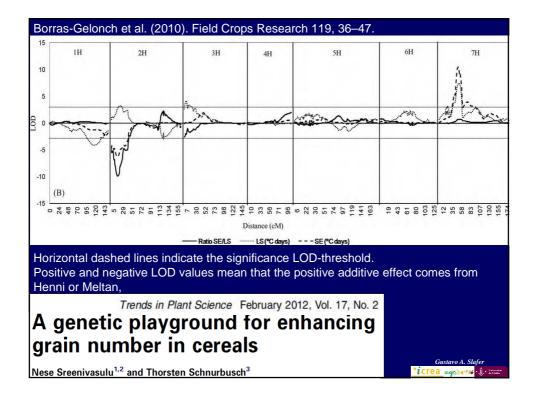

*icrea agrice No . La Latina

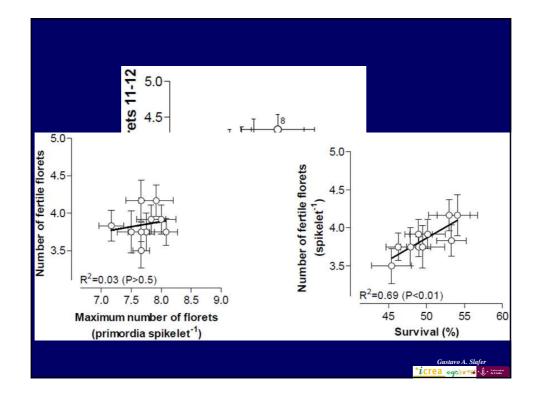


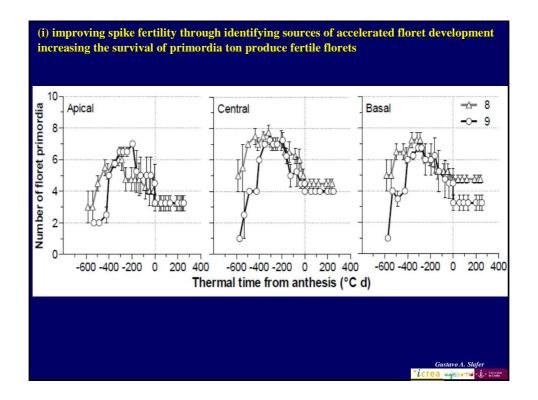


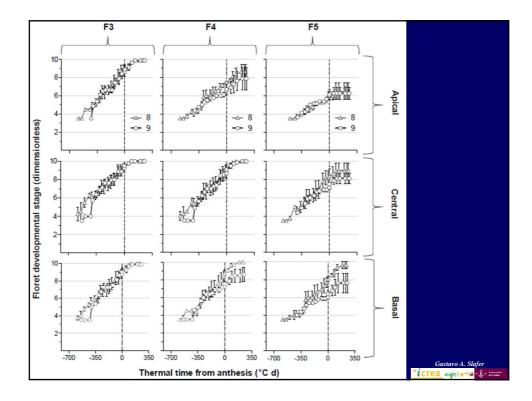








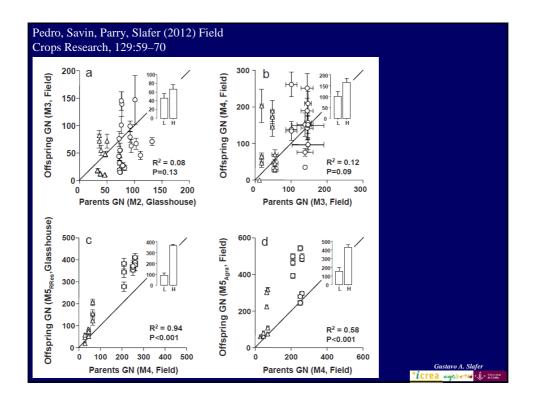

Dynamics of floret development determining differences in spike fertility within the CIMCOG population

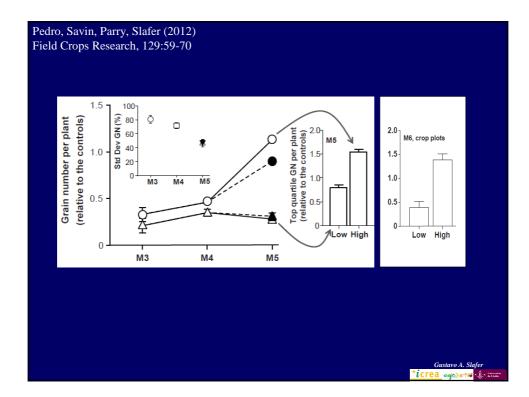

Oscar González^{1,2}, Simon Griffiths², Gemma Molero¹, Matthew Reynolds¹, Gustavo A. Slafer³ ¹CIMMYT, Mexico; ²John Innes Centre, UK.; ³ICREA and University of Lleida, Spain

To quantify differences in dynamics of floret development responsible for differences in number of fertile florets (basis of spike fertility) within a subset of 10 genotypes selected from the CIMCOG

	Entry		Name				Trait	
	1 BACANOR		A T88			high grains/m2		
2 BGN/RIAI TO			0			late development		
	3	BRBT1*2/K	IRITATI				large seed	
Trait			Average		CIMCOG		Subset	
			CIMCOG	Subset	Range	LSD _{0.05}	Range	LSD _{0.05}
Yield (Mg ha ⁻¹)		6.11	6.05	4.48 - 7.20	0.68	5.55 - 6.52	0.68	
Biomass (Mg ha-1)		13.58	13.41	11.05 - 15.60	2.24	12.37 - 15.04	1.57	
Harvest index		0.45	0.45	0.40 - 0.51	0.02	0.41 - 0.49	0.03	
Number of grains (m ⁻²)		14379	15801	11357 – 21387	1622	12853 - 21387	2085	
Number of grains (spike ⁻¹)		47	47	36 - 67	5.50	39 - 57	4.14	
Grain weight (mg grain ⁻¹)		42.9	39	28 - 53	2.08	28 - 45	1.43	
Days to anthesis		89	88	79 – 96	2.20	79 - 96	2.00	

Differences in pattern of floret developmental was found in the subset of lines of the CIMCOG population studied at the MEXPLAT


It seems that much of the differences between genotypes of the CIMCOG panel in terms of spike fertility can be traced back to processes of floret development determining survival or death of labile primordia

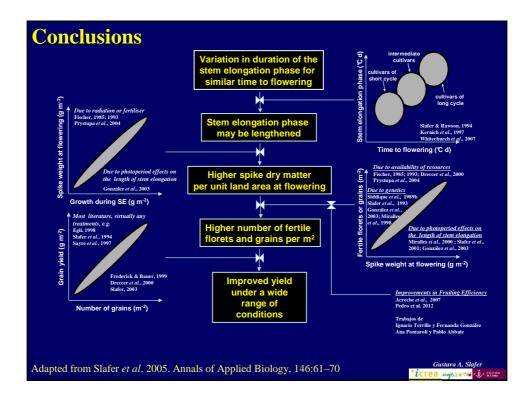

Labile florets which start developing slightly earlier respect to anthesis increase their likelihood to survive and produce a fertile floret

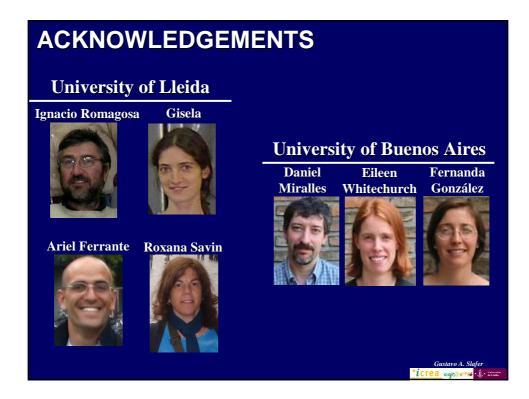
Gustavo A. Slafer

Genetic work to identify genetic factors behind optimised developmental patterns and maximised spike fertility being carried out now (and in the next seasons) at JIC

	ROTHAMSTED, UK 2006		^(a) Pedro, Savin, Parry, Slafer (2012)	
M2	Mutant TILLING population growth in greenho			
	30 Lines with extreme source/sink ratio	Field Crops Research, 129:59–70		
	Low grain number/plant (30-50) High grain	number/plant (>70)	To test empirically to	
			- v	
	Low grain number High grain number Low grain number per stem length per stem length per stem length	High grain number per stem length	what degree fruiting	
	CB86, CC78, CC86, CD86 CA74, CB86, CC82, CF92 CA62, CA82, CA87, CA91, CB CB81, CC78, CC90, CD91, CB		efficiency would be a	
M3	AGRAMUNT, Spain 06-07, Field conditi		likely trait to select for we	
	Selection of 25 lines following the criteria of number of grains	per unit stem length	did an empirical exercise	
		umber perstem length	-	
	C886: 11, 2, 6, 9, C886: 15, 16, 20, C092: 7, 12,3,9 CA86: 2, 4, 7, C075 CD 81: 1, 2, 6, C686: 15, 16, 20, C092: 7, 12,3,9 CD 81: 1, 2, 6, C68	5: 1, 4, 6; CC90: 11, 14, 9; 7: 2, 4, 5	with a population of	
M4	AGRAMUNT, Spain 07-08, Field condition	005	mutants almost NOT	
	Selection of 18 lines following the criteria of number of grains			
	Low grain number per stem length High grain nu	umber per stem length	varying for plant height	
	C885-11: 11, 12, 20; C886-2: C885-11: 6, 7; C885-2: 12; C885-20: CA75-4: 5, 8, 9; C08 19, 1, 6; C885-20: 12, 16, 17 3.5; C885-16: 5; C885-4: 8, 9, 16	0-14: 9, 10, 19; CE87-4: 6, 9, 8;		
M5	RRes 08-09 AGRAMUNT 08-09 RRes 08-09	AGRAMUNT 08-09	We selected divergent	
	(Greenhouse) (Field conditions) (Greenhouse) C886-11: 11; C886-2: 1, 6. C886-11: 6, 7; C886-8: 8. CA75-4: 2, 8; C887-4: 9.	(Field conditions) CA75-4 8; CE87-4: 9; CC90-14: 19	lines for number of grains	
	AGRAMUNT 09-10		per unit stem length (as a	
MG	(Field conditions and canopy struct	ure)		
₹1.01	(b)		non-destructive proxy for	
0.8 0.8	т 250 МЗ 600 М4		Fruiting efficiency)	
୪ ≈ 0.6	400 H	19 ¹ 800	r and g entrenency)	
% 0.8° ₩60.4°		400 4 1		
0.2	5 50 100 100 m2	200		
لم. <u>ق</u>		8 10 0 5 10	15 Gustavo A. Slafer	
Gr	aln number plant-1 Grains cm ⁻¹ grains cm	Grains cm ⁻¹ sten	*ICrea agricerve	

Conclusions


- As modern high-yielding wheats still seem to be mostly sink-limited during grain filling, further raising grain number is critical
- There are several different attributes which might have the potential (Reynolds et al., 2012; Plant Cell & Environment, 35:1799-1823)
- Fruiting efficiency (the efficiency with which dry matter allocated to spikes immediately before anthesis is used to set grains) may be a relevant trait to further raise yield of wheat
- There seem to be consistent cultivar differences in this attribute which most of the times is associated with genotypic differences in grain number and yield
- Developmental attributes of the florets and phasic developmental rates during stem elongation may be a relevant source of variation in FE


*icrea agaberne . U. Stat

*icrea agateria · i · in

Conclusions

- At least for the rate of phasic development of stem elongation, QTLs may be identified
- However, when selecting for FE we must avoid compensations from reduced spike dry matter partitioning (Gaju et al., 2009; Foulkes et al., 2011) and reduced grain weight potential (Ferrante et al., 2013)
- Alternatively, further raising SDWa without further reducing plant height might be possible through fine-tuning developmental patterns

